3.7.23 \(\int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx\) [623]

Optimal. Leaf size=235 \[ -\frac {2 (2 A b-a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2 A-2 A b^2+a b B\right ) \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{a^2 \left (a^2-b^2\right ) d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}+\frac {2 b (A b-a B) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \]

[Out]

2*b*(A*b-B*a)*sin(d*x+c)/a/(a^2-b^2)/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)-2*(2*A*b-B*a)*(cos(1/2*d*x+1/2*
c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^
(1/2)/a^2/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+2*(A*a^2-2*A*b^2+B*a*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1
/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/a^
2/(a^2-b^2)/d/((b+a*cos(d*x+c))/(a+b))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.46, antiderivative size = 235, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.257, Rules used = {3034, 4115, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \begin {gather*} \frac {2 b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2 A+a b B-2 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a^2 d \left (a^2-b^2\right ) \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {2 (2 A b-a B) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(-2*(2*A*b - a*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(a^2*d*Sqrt[Cos[c
+ d*x]]*Sqrt[a + b*Sec[c + d*x]]) + (2*(a^2*A - 2*A*b^2 + a*b*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*
a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(a^2*(a^2 - b^2)*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]) + (2*b*(A*b - a*B
)*Sin[c + d*x])/(a*(a^2 - b^2)*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3034

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[(a + b*Csc[e + f*x])^m*((
c + d*Csc[e + f*x])^n/(g*Csc[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4115

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[b*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^n/(
a*f*(m + 1)*(a^2 - b^2))), x] + Dist[1/(a*(m + 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*
x])^n*Simp[A*(a^2*(m + 1) - b^2*(m + n + 1)) + a*b*B*n - a*(A*b - a*B)*(m + 1)*Csc[e + f*x] + b*(A*b - a*B)*(m
 + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b
^2, 0] && LtQ[m, -1] &&  !(ILtQ[m + 1/2, 0] && ILtQ[n, 0])

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {A+B \sec (c+d x)}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{3/2}} \, dx\\ &=\frac {2 b (A b-a B) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{2} \left (-a^2 A+2 A b^2-a b B\right )+\frac {1}{2} a (A b-a B) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac {2 b (A b-a B) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left ((2 A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{a^2}-\frac {\left (\left (-a^2 A+2 A b^2-a b B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{a^2 \left (a^2-b^2\right )}\\ &=\frac {2 b (A b-a B) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left ((2 A b-a B) \sqrt {b+a \cos (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{a^2 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (-a^2 A+2 A b^2-a b B\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{a^2 \left (a^2-b^2\right ) \sqrt {b+a \cos (c+d x)}}\\ &=\frac {2 b (A b-a B) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left ((2 A b-a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{a^2 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (-a^2 A+2 A b^2-a b B\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{a^2 \left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}\\ &=-\frac {2 (2 A b-a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2 A-2 A b^2+a b B\right ) \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{a^2 \left (a^2-b^2\right ) d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}+\frac {2 b (A b-a B) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 9.45, size = 365, normalized size = 1.55 \begin {gather*} \frac {2 (b+a \cos (c+d x)) (A+B \sec (c+d x)) \left (-a b (-A b+a B) \sin (c+d x)+\frac {\left (\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)\right )^{3/2} \left (i (a+b) \left (a^2 A-2 A b^2+a b B\right ) E\left (i \sinh ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-i a (a+b) (-2 A b+a (A+B)) F\left (i \sinh ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+\left (a^2 A-2 A b^2+a b B\right ) (b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )^{3/2} \tan \left (\frac {1}{2} (c+d x)\right )\right )}{\sec ^{\frac {3}{2}}(c+d x)}\right )}{a^2 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (B+A \cos (c+d x)) (a+b \sec (c+d x))^{3/2}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(2*(b + a*Cos[c + d*x])*(A + B*Sec[c + d*x])*(-(a*b*(-(A*b) + a*B)*Sin[c + d*x]) + ((Cos[(c + d*x)/2]^2*Sec[c
+ d*x])^(3/2)*(I*(a + b)*(a^2*A - 2*A*b^2 + a*b*B)*EllipticE[I*ArcSinh[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Se
c[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] - I*a*(a + b)*(-2*A*b + a*(A + B))*El
lipticF[I*ArcSinh[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c +
d*x)/2]^2)/(a + b)] + (a^2*A - 2*A*b^2 + a*b*B)*(b + a*Cos[c + d*x])*(Sec[(c + d*x)/2]^2)^(3/2)*Tan[(c + d*x)/
2]))/Sec[c + d*x]^(3/2)))/(a^2*(a^2 - b^2)*d*Sqrt[Cos[c + d*x]]*(B + A*Cos[c + d*x])*(a + b*Sec[c + d*x])^(3/2
))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(888\) vs. \(2(277)=554\).
time = 33.05, size = 889, normalized size = 3.78

method result size
default \(\frac {2 \sqrt {\frac {b +a \cos \left (d x +c \right )}{\cos \left (d x +c \right )}}\, \left (-1+\cos \left (d x +c \right )\right ) \left (1+\cos \left (d x +c \right )\right )^{2} \left (A \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}\, a^{2} \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}+A \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}\, a b \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}-A \cos \left (d x +c \right ) \sqrt {\frac {a -b}{a +b}}\, a^{2} \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}+2 A \cos \left (d x +c \right ) \sqrt {\frac {a -b}{a +b}}\, b^{2} \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}+A \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticE \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) \sin \left (d x +c \right ) a^{2}-2 A \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticE \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) \sin \left (d x +c \right ) b^{2}-A \sin \left (d x +c \right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticF \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) a^{2}-2 A \sin \left (d x +c \right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticF \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) a b -B \cos \left (d x +c \right ) \sqrt {\frac {a -b}{a +b}}\, a b \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}+B \sin \left (d x +c \right ) \EllipticE \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, a b +B \sin \left (d x +c \right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticF \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) a^{2}-A \sqrt {\frac {a -b}{a +b}}\, a b \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}-2 A \sqrt {\frac {a -b}{a +b}}\, b^{2} \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}+B \sqrt {\frac {a -b}{a +b}}\, a b \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\right ) \left (\sqrt {\cos }\left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}}{d \,a^{2} \left (b +a \cos \left (d x +c \right )\right ) \left (a -b \right ) \sin \left (d x +c \right )^{3}}\) \(889\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))*cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/d*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))*(1+cos(d*x+c))^2*(A*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a
^2*(1/(1+cos(d*x+c)))^(1/2)+A*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a*b*(1/(1+cos(d*x+c)))^(1/2)-A*cos(d*x+c)*((a-b
)/(a+b))^(1/2)*a^2*(1/(1+cos(d*x+c)))^(1/2)+2*A*cos(d*x+c)*((a-b)/(a+b))^(1/2)*b^2*(1/(1+cos(d*x+c)))^(1/2)+A*
((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)
/(a-b))^(1/2))*sin(d*x+c)*a^2-2*A*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-
b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*b^2-A*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2
)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*a^2-2*A*((b+a*cos(
d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1
/2))*sin(d*x+c)*a*b-B*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a*b*(1/(1+cos(d*x+c)))^(1/2)+B*sin(d*x+c)*EllipticE((-1+c
os(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*
a*b+B*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/s
in(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2-A*((a-b)/(a+b))^(1/2)*a*b*(1/(1+cos(d*x+c)))^(1/2)-2*A*((a-b)/(a+b))^(1/2)
*b^2*(1/(1+cos(d*x+c)))^(1/2)+B*((a-b)/(a+b))^(1/2)*a*b*(1/(1+cos(d*x+c)))^(1/2))*cos(d*x+c)^(1/2)*((a-b)/(a+b
))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)/a^2/(b+a*cos(d*x+c))/(a-b)/sin(d*x+c)^3

________________________________________________________________________________________

Maxima [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 1.64, size = 699, normalized size = 2.97 \begin {gather*} -\frac {6 \, {\left (B a^{3} b - A a^{2} b^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + b}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (\sqrt {2} {\left (3 i \, B a^{4} - 5 i \, A a^{3} b - 2 i \, B a^{2} b^{2} + 4 i \, A a b^{3}\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (3 i \, B a^{3} b - 5 i \, A a^{2} b^{2} - 2 i \, B a b^{3} + 4 i \, A b^{4}\right )}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + {\left (\sqrt {2} {\left (-3 i \, B a^{4} + 5 i \, A a^{3} b + 2 i \, B a^{2} b^{2} - 4 i \, A a b^{3}\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-3 i \, B a^{3} b + 5 i \, A a^{2} b^{2} + 2 i \, B a b^{3} - 4 i \, A b^{4}\right )}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) - 3 \, {\left (\sqrt {2} {\left (i \, A a^{4} + i \, B a^{3} b - 2 i \, A a^{2} b^{2}\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A a^{3} b + i \, B a^{2} b^{2} - 2 i \, A a b^{3}\right )}\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) - 3 \, {\left (\sqrt {2} {\left (-i \, A a^{4} - i \, B a^{3} b + 2 i \, A a^{2} b^{2}\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A a^{3} b - i \, B a^{2} b^{2} + 2 i \, A a b^{3}\right )}\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right )}{3 \, {\left ({\left (a^{6} - a^{4} b^{2}\right )} d \cos \left (d x + c\right ) + {\left (a^{5} b - a^{3} b^{3}\right )} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/3*(6*(B*a^3*b - A*a^2*b^2)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + (sqrt(
2)*(3*I*B*a^4 - 5*I*A*a^3*b - 2*I*B*a^2*b^2 + 4*I*A*a*b^3)*cos(d*x + c) + sqrt(2)*(3*I*B*a^3*b - 5*I*A*a^2*b^2
 - 2*I*B*a*b^3 + 4*I*A*b^4))*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3,
 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a) + (sqrt(2)*(-3*I*B*a^4 + 5*I*A*a^3*b + 2*I*B*a^2*b^2 - 4
*I*A*a*b^3)*cos(d*x + c) + sqrt(2)*(-3*I*B*a^3*b + 5*I*A*a^2*b^2 + 2*I*B*a*b^3 - 4*I*A*b^4))*sqrt(a)*weierstra
ssPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) +
2*b)/a) - 3*(sqrt(2)*(I*A*a^4 + I*B*a^3*b - 2*I*A*a^2*b^2)*cos(d*x + c) + sqrt(2)*(I*A*a^3*b + I*B*a^2*b^2 - 2
*I*A*a*b^3))*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse
(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a)) -
 3*(sqrt(2)*(-I*A*a^4 - I*B*a^3*b + 2*I*A*a^2*b^2)*cos(d*x + c) + sqrt(2)*(-I*A*a^3*b - I*B*a^2*b^2 + 2*I*A*a*
b^3))*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(
3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a)))/((a^6 -
 a^4*b^2)*d*cos(d*x + c) + (a^5*b - a^3*b^3)*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \sqrt {\cos {\left (c + d x \right )}}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*cos(d*x+c)**(1/2)/(a+b*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + B*sec(c + d*x))*sqrt(cos(c + d*x))/(a + b*sec(c + d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/(b*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^(1/2)*(A + B/cos(c + d*x)))/(a + b/cos(c + d*x))^(3/2),x)

[Out]

int((cos(c + d*x)^(1/2)*(A + B/cos(c + d*x)))/(a + b/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________